The water from the Abengourou dam is used for the production of drinking water. This study aims to characterise this resource in order to assess the quality of the water for monitoring and sustainability of the operation. Six sampling points were identified, four of which were at the main entrances, one inside the water body and another at the dam. Samples were taken at three different depths and during the two main seasons. In total, some forty physical, chemical and microbiological parameters were monitored for the thirty-six samples taken in one year. The results obtained show an inter-seasonal variation in the parameters monitored. The waters of the dam are very weakly mineralised and not very turbid. The highest turbidity during the wet and dry seasons are respectively 6.5 NTU and 11.1 NTU. The electrical conductivity of the water is between 173 and 190 µS/cm in the dry season and between 149 and 163 μS/cm in the wet season. This is mainly due to rising water levels during the wet season and evaporation during the dry season. Concentrations of iron, pesticide residues, manganese and ortho-phosphate above the WHO guidelines for drinking water were recorded. Average iron levels in the wet and dry seasons are 0.84 and 0.53 mg/L respectively. Manganese levels reached 2.02 in some samples in the dry season. Organohologenes were found at levels up to 0.04 µg/L in the high-water period. A greater presence of germs indicating faecal contamination was found during the high-water period. This contamination is of human or mixed human-animal origin depending on the sampling point. The highest levels are recorded at point P2, which represents the urbanised part of the catchment area for several of the parameters analysed.
Published in | American Journal of Environmental Protection (Volume 12, Issue 4) |
DOI | 10.11648/j.ajep.20231204.13 |
Page(s) | 109-120 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2023. Published by Science Publishing Group |
Abengourou Dam, Microbial Characterisation, Physico-Chemical Characterisation, Surface Water, Water Quality
[1] | Loudiere, D. and Gourbesville, P. (2020). World water development report-water and climate change. Houille Blanche-Revue Internationale de l eau. (3), 76–81. |
[2] | Loudière, D. and Gourbesville, P. (2020). Rapport mondial des Nations Unies sur la mise en valeur des ressources en eau 2020-L’eau et les changements climatiques. EDP Sciences. |
[3] | Sadio, P. M., Mbaye, M. L., Diatta, S., and Sylla, M. B. (2021). Variabilité et changement hydroclimatiques dans le bassin-versant du fleuve Casamance (Sénégal). La Houille Blanche. (106), 89-96. |
[4] | Ndiaye, A. (2020). Variabilité et changement hydro-climatiques dans le bassin versant du Ferlo (Sénégal). Mémoire de fin d'étude. Université Assane SECK, Ziguinchor, Senegal, 59. |
[5] | Koné, N., Laré, A., and Briand, A. (2020). Logement et accès aux services de base dans les bidonvilles d’Abidjan. Revue DEconomie Regionale Urbaine. (5), 829–857. |
[6] | Gomis, J. S. and Thior, M. (2020). Accès à l’eau potable et à l’assainissemendtans les quartiers informels de la commune de Ziguinchor (Sénégal): L’exemple de Nema 2 et Coboda. Journal Larhyss. 41 27–46. |
[7] | Stella, D. N. T., Ghoutum, A., Eni, R. T., Lebga, A. K., Chrétien, N., and Yemmafouo, A. (2020). Problématique d’accès à l’eau potable dans les quartiers spontanés de la ville de Bafoussam, Cameroun. International Journal of Innovation and Applied Studies. 30 (1), 215–229. |
[8] | Beli Didier, Y. A. O. (2020) Problematique de l’approvisionnementen eau potable à abidjan (Côte d’Ivoire). Eau et environnement territoires et societes. 14 129. |
[9] | Boti, C. T. B., Kenfack, S., Gnagne, T., and Soro, G. (2019). Économie d’eau des toilettes, une approche crédible de réduction du déficit en eau potable de la ville d’Abidjan (Côte d’Ivoire). International Journal of Biological and Chemical Sciences. 13 (5), 91–104. |
[10] | Razanamahandry, C. L. (2017). Pollution environnementale par le cyanure et potentialités de la bioremédiation dans des zones d’extraction aurifère en Afrique Subsaharienne: Cas du Burkina Faso. Thèse de Doctorat, Institut International d’Ingénierie de l’Eau et de l'environnement, Ouagadougou, Burkina Faso, 223. |
[11] | Razanamahandry, L. C., Andrianisa, H. A., Karoui, H., Podgorski, J., and Yacouba, H. (2018). Prediction model for cyanide soil pollution in artisanal gold mining area by using logistic regression. Catena. 162 40–50. |
[12] | Razanamahandry, L. C., Andrianisa, H. A., Karoui, H., Kouakou, K. M., and Yacouba, H. (2016). Biodegradation of free cyanide by bacterial species isolated from cyanide-contaminated artisanal gold mining catchment area in Burkina Faso. Chemosphere. 157 71–78. |
[13] | Faye, M. D., Kafando, M. B., Sawadogo, B., Panga, R., Ouédraogo, S., and Yacouba, H. (2022). Groundwater Characteristics and Quality in the Cascades Region of Burkina Faso. Resources. 11 (7), 61. |
[14] | Obiri, S., Mattah, P. A., Mattah, M. M., Armah, F. A., Osae, S., Adu-Kumi, S., et al. (2016). Assessing the environmental and socio-economic impacts of artisanal gold mining on the livelihoods of communities in the Tarkwa Nsuaem municipality in Ghana. International Journal of Environmental Research and Public Health. 13 (2), 160. |
[15] | Sana, A., De Brouwer, C., and Hien, H. (2017). Knowledge and perceptions of health and environmental risks related to artisanal gold mining by the artisanal miners in Burkina Faso: a cross-sectional survey. The Pan African Medical Journal. 27. |
[16] | Kouassi, A. M., Kouao, J.- M., and Kouakou, K. E. (2022). Caractérisation intra-annuelle de la variabilité climatique en Côte d’Ivoire. Bulletin de l’association de Géographes Français. Géographies. 99 (99–2), 289–306. |
[17] | Koudou, A., Assoma, T. V., Niamke, K. H., Anoh, K. A., Adiaffi, B., and Kouame, K. F. (2018). Caractérisation et quantification de la relation entre le réseau hydrographique et la fracturation du bassin versant côtier de l’Agnéby en Côte d’Ivoire. Afrique SCIENCE. 14 (5), 311–324. |
[18] | Kouassi, A. M., Ahoussi, K. E., Yao, K. A., Ourega, W., Yao, K. S. B., and Biemi, J. (2012). Analyse de la productivité des aquifères fissurés de la région du N’zi-Comoé (Centre-Est de la Côte d’Ivoire. LARHYSS Journal. 1112-3680-2602-7828. |
[19] | Faye, M. D., Biaou, A. C., Soro, D. D., Leye, B., Koita, M., and Yacouba, H. (2020). Understanding groundwater pollution of sissili catchment area in Burkina Faso. LARHYSS Journal P-ISSN 1112-3680 / E-ISSN 2521-9782. 0 (42), 121–144. |
[20] | Faye, M. D., Biaou, A. C., Doulkom, P. A., Koita, M., and Yacouba, H. (2023) Contribution of Remote Sensing and Geophysical Prospecting (1D) to the Knowledge of Groundwater Resources Burkina Faso. American Journal of Water Resources. 11 (2), 49–64. |
[21] | Kone, M., Ouattara, Y., Ouattara, P., Bonou, L., and Joly, P. (2016). Caractérisation des boues de vidange dépotées sur les lits de séchage de zagtouli (Ouagadougou). International Journal of Biological and Chemical Sciences. 10 (6), 2781–2795. |
[22] | Bernal-Meléndez, B.-M., Estefania. (2019). Toxicité neuro-développementale d’une exposition gestationnelle à la pollution atmosphérique : effets à court et à long terme de l’inhalation répétée de particules de fumées de diesel chez le lapin. Thèse de Doctorat Université de Lorraine, France, 349. |
[23] | Cotruvo, J. (2010). Évolution des normes de potabilité: le cas des bromates. Techniques, Sciences, Méthodes. (12), 63. |
[24] | Hamdaoui, Q. (2021). Développement d’un dispositif d’exposition contrôlé pour l’étude de l’impact neurotoxique de l’inhalation d’aérosols modèles de paraquat et de nano-objets de TiO2 : applications aux conditions neurodéveloppementales et neurodégénératives. Thése de doctorat, Université de Lyon, France, 308. |
[25] | Tardif-Drolet, M., Li, M., Pabst, T., Zagury, G., Mermillod-Blodin, R., and Genty, R. (2020). TRevue de la réglementation sur la valorisation des résidus miniers hors site au Québec. Examens environnementaux, 28 (1), 32-44. |
[26] | Leclerc, H., Mossel, D. A. A., Edberg, S. C., and Struijk, C. B. (2001). Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annual Review of Microbiology. (55), 201. |
[27] | Lacaze, A. (1996). L’eutrophisation Des Eaux Marines et Continentales: Causes, Manifestations, Conséquences et Moyens de Lutte. Ellipses. Paris. |
[28] | Ghernaout, R., Zeggane, H., and Remini, B. (2020). Dynamique du transport solide dans le bassin versant de l’Oued Isser au droit du barrage de Koudiat Acerdoune (Nord Algérie). La Houille Blanche. 4 15–32. |
[29] | Lehmann, E., Fargues, M., Nfon Dibié, J.-J., Konaté, Y., and de Alencastro, L. F. (2018). Assessment of water resource contamination by pesticides in vegetable-producing areas in Burkina Faso. Environmental Science and Pollution Research. 25 (4), 3681–3694. |
[30] | WHO/UNICEF, (2020). Water, sanitation, hygiene, and waste management for the COVID-19 virus. Interim Guidance. 6. |
[31] | WHO (2006). Guidelines for drinking-water quality: incorporating first addendum. Vol. 1, Recommendations. 3rd ed. |
[32] | Kawoun, A. G., Ahamide, B., Chabi, A., Ayena, A., Adandedji, and Vissin, E. (2020). Variabilité Pluvio-Hydrologique et Incidences sur les Eaux de Surface dans la Basse Vallée de l’Ouémé au Sud-Est Bénin [Rainfall Variability and Impacts on Surface Water in the Lower Ouémé Valley in South-East Benin]. Vol. 23 No. 2 November 2020, pp. 52–65. |
APA Style
Sawadogo, B., Faye, M. D., Konaté, Y., Ekoun, A. L., Karambiri, H. (2023). Physico-Chemical and Microbial Characterisation of Water from the Abengourou dam in Eastern Côte d’Ivoire. American Journal of Environmental Protection, 12(4), 109-120. https://doi.org/10.11648/j.ajep.20231204.13
ACS Style
Sawadogo, B.; Faye, M. D.; Konaté, Y.; Ekoun, A. L.; Karambiri, H. Physico-Chemical and Microbial Characterisation of Water from the Abengourou dam in Eastern Côte d’Ivoire. Am. J. Environ. Prot. 2023, 12(4), 109-120. doi: 10.11648/j.ajep.20231204.13
AMA Style
Sawadogo B, Faye MD, Konaté Y, Ekoun AL, Karambiri H. Physico-Chemical and Microbial Characterisation of Water from the Abengourou dam in Eastern Côte d’Ivoire. Am J Environ Prot. 2023;12(4):109-120. doi: 10.11648/j.ajep.20231204.13
@article{10.11648/j.ajep.20231204.13, author = {Boukary Sawadogo and Moussa Diagne Faye and Yacouba Konaté and Ange Ludovic Ekoun and Harouna Karambiri}, title = {Physico-Chemical and Microbial Characterisation of Water from the Abengourou dam in Eastern Côte d’Ivoire}, journal = {American Journal of Environmental Protection}, volume = {12}, number = {4}, pages = {109-120}, doi = {10.11648/j.ajep.20231204.13}, url = {https://doi.org/10.11648/j.ajep.20231204.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajep.20231204.13}, abstract = {The water from the Abengourou dam is used for the production of drinking water. This study aims to characterise this resource in order to assess the quality of the water for monitoring and sustainability of the operation. Six sampling points were identified, four of which were at the main entrances, one inside the water body and another at the dam. Samples were taken at three different depths and during the two main seasons. In total, some forty physical, chemical and microbiological parameters were monitored for the thirty-six samples taken in one year. The results obtained show an inter-seasonal variation in the parameters monitored. The waters of the dam are very weakly mineralised and not very turbid. The highest turbidity during the wet and dry seasons are respectively 6.5 NTU and 11.1 NTU. The electrical conductivity of the water is between 173 and 190 µS/cm in the dry season and between 149 and 163 μS/cm in the wet season. This is mainly due to rising water levels during the wet season and evaporation during the dry season. Concentrations of iron, pesticide residues, manganese and ortho-phosphate above the WHO guidelines for drinking water were recorded. Average iron levels in the wet and dry seasons are 0.84 and 0.53 mg/L respectively. Manganese levels reached 2.02 in some samples in the dry season. Organohologenes were found at levels up to 0.04 µg/L in the high-water period. A greater presence of germs indicating faecal contamination was found during the high-water period. This contamination is of human or mixed human-animal origin depending on the sampling point. The highest levels are recorded at point P2, which represents the urbanised part of the catchment area for several of the parameters analysed.}, year = {2023} }
TY - JOUR T1 - Physico-Chemical and Microbial Characterisation of Water from the Abengourou dam in Eastern Côte d’Ivoire AU - Boukary Sawadogo AU - Moussa Diagne Faye AU - Yacouba Konaté AU - Ange Ludovic Ekoun AU - Harouna Karambiri Y1 - 2023/07/26 PY - 2023 N1 - https://doi.org/10.11648/j.ajep.20231204.13 DO - 10.11648/j.ajep.20231204.13 T2 - American Journal of Environmental Protection JF - American Journal of Environmental Protection JO - American Journal of Environmental Protection SP - 109 EP - 120 PB - Science Publishing Group SN - 2328-5699 UR - https://doi.org/10.11648/j.ajep.20231204.13 AB - The water from the Abengourou dam is used for the production of drinking water. This study aims to characterise this resource in order to assess the quality of the water for monitoring and sustainability of the operation. Six sampling points were identified, four of which were at the main entrances, one inside the water body and another at the dam. Samples were taken at three different depths and during the two main seasons. In total, some forty physical, chemical and microbiological parameters were monitored for the thirty-six samples taken in one year. The results obtained show an inter-seasonal variation in the parameters monitored. The waters of the dam are very weakly mineralised and not very turbid. The highest turbidity during the wet and dry seasons are respectively 6.5 NTU and 11.1 NTU. The electrical conductivity of the water is between 173 and 190 µS/cm in the dry season and between 149 and 163 μS/cm in the wet season. This is mainly due to rising water levels during the wet season and evaporation during the dry season. Concentrations of iron, pesticide residues, manganese and ortho-phosphate above the WHO guidelines for drinking water were recorded. Average iron levels in the wet and dry seasons are 0.84 and 0.53 mg/L respectively. Manganese levels reached 2.02 in some samples in the dry season. Organohologenes were found at levels up to 0.04 µg/L in the high-water period. A greater presence of germs indicating faecal contamination was found during the high-water period. This contamination is of human or mixed human-animal origin depending on the sampling point. The highest levels are recorded at point P2, which represents the urbanised part of the catchment area for several of the parameters analysed. VL - 12 IS - 4 ER -